ساختار نیروگاه های اتمی جهان

تاریخ ارسال : ۲ آبان ۱۳۹۴ ساعت ۱۸ و ۲۱ دقيقه

ساختار نیروگاه های اتمی جهان
برحسب نظریه اتمی عنصر عبارت است از یك جسم خالص ساده كه با روش های شیمیایی نمی توان آن را تفكیك كرد. از تركیب عناصر با یكدیگر اجسام مركب به وجود می آیند. تعداد عناصر شناخته شده در طبیعت حدود 92 عنصر است.
هیدروژن اولین و ساده ترین عنصر و پس از آن هلیم، كربن، ازت، اكسیژن و... فلزات روی، مس، آهن، نیكل و... و بالاخره آخرین عنصر طبیعی به شماره 92، عنصر اورانیوم است. بشر توانسته است به طور مصنوعی و به كمك واكنش های هسته ای در راكتورهای اتمی و یا به كمك شتاب دهنده های قوی بیش از 20 عنصر دیگر بسازد كه تمام آن ها ناپایدارند و عمر كوتاه دارند و به سرعت با انتشار پرتوهایی تخریب می شوند. اتم های یك عنصر از اجتماع ذرات بنیادی به نام پرتون، نوترون و الكترون تشكیل یافته اند. پروتون بار مثبت و الكترون بار منفی و نوترون فاقد بار است. 
تعداد پروتون ها نام و محل قرار گرفتن عنصر را در جدول تناوبی (جدول مندلیف) مشخص می كند. اتم هیدروژن یك پروتون دارد و در خانه شماره 1 جدول و اتم هلیم در خانه شماره 2، اتم سدیم در خانه شماره 11 و... و اتم اورانیوم در خانه شماره 92 قرار دارد. یعنی دارای 92 پروتون است. 
ایزوتوپ های اورانیوم 
تعداد نوترون ها در اتم های مختلف یك عنصر همواره یكسان نیست كه برای مشخص كردن آنها از كلمه ایزوتوپ استفاده می شود. بنابراین اتم های مختلف یك عنصر را ایزوتوپ می گویند. مثلاً عنصر هیدروژن سه ایزوتوپ دارد: هیدروژن معمولی كه فقط یك پروتون دارد و فاقد نوترون است. هیدروژن سنگین یك پروتون و یك نوترون دارد كه به آن دوتریم گویند و نهایتاً تریتیم كه از دو نوترون و یك پروتون تشكیل شده و ناپایدار است و طی زمان تجزیه می شود. 
ایزوتوپ سنگین هیدروژن یعنی دوتریم در نیروگاه های اتمی كاربرد دارد و از الكترولیز آب به دست می آید. در جنگ دوم جهانی آلمانی ها برای ساختن نیروگاه اتمی و تهیه بمب اتمی در سوئد و نروژ مقادیر بسیار زیادی آب سنگین تهیه كرده بودند كه انگلیسی ها متوجه منظور آلمانی ها شده و مخازن و دستگاه های الكترولیز آنها را نابود كردند. 
غالب عناصر ایزوتوپ دارند از آن جمله عنصر اورانیوم، چهار ایزوتوپ دارد كه فقط دو ایزوتوپ آن به علت داشتن نیمه عمر نسبتاً بالا در طبیعت و در سنگ معدن یافت می شوند. این دو ایزوتوپ عبارتند از اورانیوم 235 و اورانیوم 238 كه در هر دو 92 پروتون وجود دارد ولی اولی 143 و دومی 146 نوترون دارد. اختلاف این دو فقط وجود 3 نوترون اضافی در ایزوتوپ سنگین است ولی از نظر خواص شیمیایی این دو ایزوتوپ كاملاً یكسان هستند و برای جداسازی آنها از یكدیگر حتماً باید از خواص فیزیكی آنها یعنی اختلاف جرم ایزوتوپ ها استفاده كرد. ایزوتوپ اورانیوم 235 شكست پذیر است و در نیروگاه های اتمی از این خاصیت استفاده می شود و حرارت ایجاد شده در اثر این شكست را تبدیل به انرژی الكتریكی می نمایند. در واقع ورود یك نوترون به درون هسته این اتم سبب شكست آن شده و به ازای هر اتم شكسته شده 200 میلیون الكترون ولت انرژی و دو تكه شكست و تعدادی نوترون حاصل می شود كه می توانند اتم های دیگر را بشكنند. بنابراین در برخی از نیروگاه ها ترجیح می دهند تا حدی این ایزوتوپ را در مخلوط طبیعی دو ایزوتوپ غنی كنند و بدین ترتیب مسئله غنی سازی اورانیوم مطرح می شود. 
ساختار نیروگاه اتمی 
به طور خلاصه چگونگی كاركرد نیروگاه های اتمی را بیان كرده و ساختمان درونی آنها را مورد بررسی قرار می دهیم. 
طی سال های گذشته اغلب كشورها به استفاده از این نوع انرژی هسته ای تمایل داشتند و حتی دولت ایران 15 نیروگاه اتمی به كشورهای آمریكا، فرانسه و آلمان سفارش داده بود. ولی خوشبختانه بعد از وقوع دو حادثه مهم تری میل آیلند (Three Mile Island) در 28 مارس 1979 و فاجعه چرنوبیل (Chernobyl) در روسیه در 26 آوریل 1986، نظر افكار عمومی نسبت به كاربرد اتم برای تولید انرژی تغییر كرد و ترس و وحشت از جنگ اتمی و به خصوص امكان تهیه بمب اتمی در جهان سوم، كشورهای غربی را موقتاً مجبور به تجدیدنظر در برنامه های اتمی خود كرد. 
نیروگاه اتمی در واقع یك بمب اتمی است كه به كمك میله های مهاركننده و خروج دمای درونی به وسیله مواد خنك كننده مثل آب و گاز، تحت كنترل درآمده است. اگر روزی این میله ها و یا پمپ های انتقال دهنده مواد خنك كننده وظیفه خود را درست انجام ندهند، سوانح متعددی به وجود می آید و حتی ممكن است نیروگاه نیز منفجر شود، مانند فاجعه نیروگاه چرنوبیل شوروی. یك نیروگاه اتمی متشكل از مواد مختلفی است كه همه آنها نقش اساسی و مهم در تعادل و ادامه حیات آن را دارند. این مواد عبارت اند از: 
1- ماده سوخت متشكل از اورانیوم طبیعی، اورانیوم غنی شده، اورانیوم و پلوتونیم است. 
عمل سوختن اورانیوم در داخل نیروگاه اتمی متفاوت از سوختن زغال یا هر نوع سوخت فسیلی دیگر است. در این پدیده با ورود یك نوترون كم انرژی به داخل هسته ایزوتوپ اورانیوم 235 عمل شكست انجام می گیرد و انرژی فراوانی تولید می كند. بعد از ورود نوترون به درون هسته اتم، ناپایداری در هسته به وجود آمده و بعد از لحظه بسیار كوتاهی هسته اتم شكسته شده و تبدیل به دوتكه شكست و تعدادی نوترون می شود. تعداد متوسط نوترون ها به ازای هر 100 اتم شكسته شده 247 عدد است و این نوترون ها اتم های دیگر را می شكنند و اگر كنترلی در مهار كردن تعداد آنها نباشد واكنش شكست در داخل توده اورانیوم به صورت زنجیره ای انجام می شود كه در زمانی بسیار كوتاه منجر به انفجار شدیدی خواهد شد. 
در واقع ورود نوترون به درون هسته اتم اورانیوم و شكسته شدن آن توام با انتشار انرژی معادل با 200 میلیون الكترون ولت است این مقدار انرژی در سطح اتمی بسیار ناچیز ولی در مورد یك گرم از اورانیوم در حدود صدها هزار مگاوات است. كه اگر به صورت زنجیره ای انجام شود، در كمتر از هزارم ثانیه مشابه بمب اتمی عمل خواهد كرد. اما اگر تعداد شكست ها را در توده اورانیوم و طی زمان محدود كرده به نحوی كه به ازای هر شكست، اتم بعدی شكست حاصل كند شرایط یك نیروگاه اتمی به وجود می آید. به عنوان مثال نیروگاهی كه دارای 10 تن اورانیوم طبیعی است قدرتی معادل با 100 مگاوات خواهد داشت و به طور متوسط 105 گرم اورانیوم 235 در روز در این نیروگاه شكسته می شود و همان طور كه قبلاً گفته شد در اثر جذب نوترون به وسیله ایزوتوپ اورانیوم 238 اورانیوم 239 به وجود می آمد كه بعد از دو بار انتشار پرتوهای بتا (یا الكترون) به پلوتونیم 239 تبدیل می شود كه خود مانند اورانیوم 235 شكست پذیر است. در این عمل 70 گرم پلوتونیم حاصل می شود. ولی اگر نیروگاه سورژنراتور باشد و تعداد نوترون های موجود در نیروگاه زیاد باشند مقدار جذب به مراتب بیشتر از این خواهد بودو مقدار پلوتونیم های به وجود آمده از مقدار آنهایی كه شكسته می شوند بیشتر خواهند بود. در چنین حالتی بعد از پیاده كردن میله های سوخت می توان پلوتونیم به وجود آمده را از اورانیوم و فرآورده های شكست را به كمك واكنش های شیمیایی بسیار ساده جدا و به منظور تهیه بمب اتمی ذخیره كرد. 
2- نرم كننده ها موادی هستند كه برخورد نوترون های حاصل از شكست با آنها الزامی است و برای كم كردن انرژی این نوترون ها به كار می روند. زیرا احتمال واكنش شكست پی در پی به ازای نوترون های كم انرژی بیشتر می شود. آب سنگین (D2O) یا زغال سنگ (گرافیت) به عنوان نرم كننده نوترون به كار برده می شوند. 
3- میله های مهاركننده: این میله ها از مواد جاذب نوترون درست شده اند و وجود آنها در داخل رآكتور اتمی الزامی است و مانع افزایش ناگهانی تعداد نوترون ها در قلب رآكتور می شوند. اگر این میله ها كار اصلی خود را انجام ندهند، در زمانی كمتر از چند هزارم ثانیه قدرت رآكتور چند برابر شده و حالت انفجاری یا دیورژانس رآكتور پیش می آید. این میله ها می توانند از جنس عنصر كادمیم و یا بور باشند. 
4- مواد خنك كننده یا انتقال دهنده انرژی حرارتی: این مواد انرژی حاصل از شكست اورانیوم را به خارج از رآكتور انتقال داده و توربین های مولد برق را به حركت در می آورند و پس از خنك شدن مجدداً به داخل رآكتور برمی گردند. البته مواد در مدار بسته و محدودی عمل می كنند و با خارج از محیط رآكتور تماسی ندارند. این مواد می توانند گاز CO2 ، آب، آب سنگین، هلیم گازی و یا سدیم مذاب باشند. 
غنی سازی اورانیم 
سنگ معدن اورانیوم موجود در طبیعت از دو ایزوتوپ 235 به مقدار 7/0 درصد و اورانیوم 238 به مقدار 3/99 درصد تشكیل شده است. سنگ معدن را ابتدا در اسید حل كرده و بعد از تخلیص فلز، اورانیوم را به صورت تركیب با اتم فلئور (F) و به صورت مولكول اورانیوم هكزا فلوراید UF6 تبدیل می كنند كه به حالت گازی است. سرعت متوسط مولكول های گازی با جرم مولكولی گاز نسبت عكس دارد این پدیده را گراهان در سال 1864 كشف كرد. از این پدیده كه به نام دیفوزیون گازی مشهور است برای غنی سازی اورانیوم استفاده می كنند.در عمل اورانیوم هكزا فلوراید طبیعی گازی شكل را از ستون هایی كه جدار آنها از اجسام متخلخل (خلل و فرج دار) درست شده است عبور می دهند. منافذ موجود در جسم متخلخل باید قدری بیشتر از شعاع اتمی یعنی در حدود 5/2 انگسترم (000000025/0 سانتیمتر) باشد. ضریب جداسازی متناسب با اختلاف جرم مولكول ها است.روش غنی سازی اورانیوم تقریباً مطابق همین اصولی است كه در اینجا گفته شد. با وجود این می توان به خوبی حدس زد كه پرخرج ترین مرحله تهیه سوخت اتمی همین مرحله غنی سازی ایزوتوپ ها است زیرا از هر هزاران كیلو سنگ معدن اورانیوم 140 كیلوگرم اورانیوم طبیعی به دست می آید كه فقط یك كیلوگرم اورانیوم 235 خالص در آن وجود دارد. برای تهیه و تغلیظ اورانیوم تا حد 5 درصد حداقل 2000 برج از اجسام خلل و فرج دار با ابعاد نسبتاً بزرگ و پی درپی لازم است تا نسبت ایزوتوپ ها تا از برخی به برج دیگر به مقدار 01/0 درصد تغییر پیدا كند. در نهایت موقعی كه نسبت اورانیوم 235 به اورانیوم 238 به 5 درصد رسید باید برای تخلیص كامل از سانتریفوژهای بسیار قوی استفاده نمود. برای ساختن نیروگاه اتمی، اورانیوم طبیعی و یا اورانیوم غنی شده بین 1 تا 5 درصد كافی است. ولی برای تهیه بمب اتمی حداقل 5 تا 6 كیلوگرم اورانیوم 235 صددرصد خالص نیاز است.
عملا در صنایع نظامی از این روش استفاده نمی شود و بمب های اتمی را از پلوتونیوم 239 كه سنتز و تخلیص شیمیایی آن بسیار ساده تر است تهیه می كنند. عنصر اخیر را در نیروگاه های بسیار قوی می سازند كه تعداد نوترون های موجود در آنها از صدها هزار میلیارد نوترون در ثانیه در سانتیمتر مربع تجاوز می كند. عملاً كلیه بمب های اتمی موجود در زراد خانه های جهان از این عنصر درست می شود.روش ساخت این عنصر در داخل نیروگاه های اتمی به صورت زیر است: ایزوتوپ های اورانیوم 238 شكست پذیر نیستند ولی جاذب نوترون كم انرژی (نوترون حرارتی هستند. تعدادی از نوترون های حاصل از شكست اورانیوم 235 را جذب می كنند و تبدیل به اورانیوم 239 می شوند. این ایزوتوپ از اورانیوم بسیار ناپایدار است و در كمتر از ده ساعت تمام اتم های به وجود آمده تخریب می شوند. در درون هسته پایدار اورانیوم 239 یكی از نوترون ها خودبه خود به پروتون و یك الكترون تبدیل می شود.بنابراین تعداد پروتون ها یكی اضافه شده و عنصر جدید را كه 93 پروتون دارد نپتونیم می نامند كه این عنصر نیز ناپایدار است و یكی از نوترون های آن خود به خود به پروتون تبدیل می شود و در نتیجه به تعداد پروتون ها یكی اضافه شده و عنصر جدید كه 94 پروتون دارد را پلوتونیم می نامند. این تجربه طی چندین روز انجام می گیرد. 

پخش پارسیان الکتریک : تهیه و توزیع کالای الکتریکی - ارسال سریع کالا به تمام نقاط کشور

 شماره تماس  دفتر 02166344801*** 02166344750  *** 02166344797***

 

آدرس دفتر مرکزی : خ لاله زار شمالی، بالاتر از منوچهری-کوچه مصباح کریمی-پلاک 13-واحد 3