۲ آبان ۱۳۹۴ ساعت ۱۶ و ۲۶ دقيقه

گاه امکان بررسی اجسام از نزدیک وجود ندارد. برای مثال جهت بررسی سطح اقیانوسها نقشه برداری از عراضی جغرافیایی لزوم ساخت وسایلی که بتوانند از راه دور این کاررا انجام دهند به چشم می‌خورد

با دستیابی به فناوری سنجش از راه دور بسیاری از این مشکلات برطرف گشت. در واقع در این روش امکان بررسی اجسام وسطوحی که نیاز به بررسی از راه دور دارند را فراهم می‌آورد. سنجش از راه دور رامی توان به دو بخش فعال وغیر فعال تقسیم کرد. گستره طول موج امواج مایکرویو نسبت به طیف مادون قرمز ومرئی سبب گردیده تا از سنجش از راه دور به وسیله امواج از این طیف استفاده گردد . عملکردسیستمهای سنجش غیرفعال همانند سیستمهای سنجش دما عمل می‌کنند .در اینگونه سیستمها با اندازه گیری انرژی الکترومغناطیسی که هر جسم به طور طبیعی از خود ساتع می‌کند نتایج لازم کسب می‌گردد .هواشناسی واقیانوس نگاری از کاربردهای این نوع سنجش می‌باشد . در سیستمهای سنجش فعال از طیف موج مایکرویو برای روشن کردن هدف استفاده می‌شود. این سنسورها را می‌توان به دو بخش تقسیم کرد : سنسورهای تصویری وغیرتصویری (فاقد قابلیت تصویربرداری) . از انواع سنسورهای غیر تصویری می‌توان به ارتفاع سنج و اسکترومتر ها(پراکنش‌سنج) اشاره کرد .کاربرد ارتفاع سنجها در عکس برداری جغرافیایی وتعیین ارتفاع ازسطح دریا می‌باشد .اسکترومتر که اغلب بر روی زمین نصب میگردند میزان پراکنش امواج را ازسطوح مختلف اندازه گیری می‌کنند. این وسیله در مواردی همچون اندازه گیری سرعت باد در سطح دریا و کالیبراسیون تصویر رادار کابرد دارد . معمول‌ترین سنسور فعال که عمل تصویربرداری را انجام می‌دهد رادار می‌باشد. رادار(radio detection and ranging) مخفف وبه معنای آشکارسازی به کمک امواج مایکرویو است .به طور کلی می‌توان عملکرد رادار را در چگونگی عملکرد سنسورهای آن خلاصه کرد. سنسورها سیگنالهای مایکرویو را به سمت اهدف مورد نظر ارسال کرده وسپس سیگنالهای بازتابیده شده از سطوح مختلف را شناسایی می‌کند. قدرت (میزان انرژی) سیگنالهای پراکنده شده جهت تفکیک اهداف مورد استفاده قرارمی گیرد. با اندازه گیری فاصه زمانی بین ارسال ودریافت سیگنالها می‌توان فاصله تا اهداف را مشخص کرد. از مزایای شاخص رادار می‌توان به عملکرد رادار در شب یا روز وهمچنین قابلیت تصویربرداری درشرایط آب و هوایی مختلف اشاره کرد. امواج مایکرویو قادر به نفوذ در ابر مه ,گردوغبار وباران می‌باشند. از آنجاییکه عملکرد رادار با طرز کار سنسورهایی که با طیفهای مرئی ومادون قرمز کار می‌کنند متفاوت است ازاینرو می‌توان با تلفیق اطلاعات بدست آمده تصاویر دقیقی را بدست آورد .
 
تاریخچه
اولین تجربه در مورد بازتابش امواج رادیویی توسط هرتز آلمانی در سال 1886 بدست آمد. پس از گذشت مدت زمان کمی اولین رادار که از آن برای آشکارسازی کشتیها استفاده می‌شد مورد بهره برداری قرار گرفت. در سالهای 1920 تا 1930 پیشرفتهایی در جهت ساخت رادار با قابلیت تعیین فاصله اهداف صورت گرفت. اولین رادارهای تصویری درطی جنگ جهانی دوم برای آشکارسازی وموقعیت یابی کشتیها وهواپیماها استفاده شد. بعد از جنگ جهانی دوم راداربا دید جانبی (SLAR) جهت جستجوی اهداف نظامی و کشف مناطق نظامی ساخته شد. اینگونه رادارها با داشتن آنتن درسمت جپ وراست مسیر پرواز قادر به تفکیک دقیقتر اهداف مورد نظر بودند. در سال 1950 با توسعه سیستمهای SLAR تکنولوژی رادار دهانه ترکیبی ( رادار با آنتن ترکیبی) گامی در جهت ایجاد تصاویر با کیفیت بالا برداشته شد. در سال 1960 استفاده از رادارها ی هوایی وفضایی توسعه یافت وعلاوه برکاربرد نظامی جهت نقشه برداریهای جغرافیایی و اکتشافات علمی و... نیز مورد استفاده قرار گرفتند. 
اصول و ساختمان رادار 
 مهمترین نکته حائز اهمیت در بخش قبل را میتوان معرفی رادار به عنوان وسیله اندازه گیری معرفی کرد. اجزاء تشکیل دهنده سیستم رادار فرستنده , گیرنده آنتن وسیستمهای الکتریکی جهت ثبت و پردازش اطلاعات می‌باشد. فرستنده پالسهای کوتاه مایکرویو (A) را که بوسیله آنتن راداربه صورت پرتو متمرکز می‌شوند(B) با فاصله زمانی معیین تولید می‌کند. آنتن راداربخشی از سیگنالهای بازتابیده شده (c) از سطوح مختلف را دریافت می‌کند. 
با اندازه گیری مدت زمان ارسال پالس و دریافت پژواکهای پراکنده شده از اشیاء مختلف می‌توان فاصله آنها ودر نتیجه موقعیت آنها را تعیین نمود . با ثبت و پردازش سیگنال بازتابیده توسط سنسور تصویر دو بعدی از سطح مورد نظر تشکیل می‌گردد .
پهنای باند : از آنجاییکه گستره طیف امواج مایکرویو نسبت به طیفهای مرئی ومادون قرمزوسیع تر می‌باشد لذا اکثر رادارها از این طیف استفاده می‌کنند. در رادارهای تصویری اغلب از طول موجهای زیر استفاده می‌شود: ka&k&ku band X_band C_band S_band L_band P_band max)) تمامی طول موجهای استفاده شده در رادارهای تصویری در محدوده سانتیمتر است. طول موج رادار در نحوه تشکیل تصویر موثر می‌باشد. با افزایش طول موج شاهد تصاویر با کیفیت بهتر می‌باشیم .
قطبیدگی (polarization) : هنگامی که در مورد امواج الکترومغناطیسی همانند امواج مایکرویو صحبت می‌گردد بحث درباره قطبیدگی حائز اهمیت می‌باشد. قطبیدگی عبارت است از جهت میدان الکتریکی در امواج الکترومغناطیسی. به طور کلی می‌توان قطبیدگی امواج را به سه دسته تقسیم بندی کرد : قطبیدگی خطی و دایره‌ای وبیضوی. اغلب رادارهای تصویری از قطبیدگی خطی استفاده کرده , که این نوع قطبیدگی را می‌توان به دو بخش عمودی(vertical) وافقی (horizontal) تقسیم بندی کرد . اغلب سنسورهای رادار طوری طراحی شده‌اند که قابلیت ارسال وهمچنین دریافت امواج را به یکی از دو صورت بالا دارا هستند. در بعضی از رادارها دریافت وارسال امواج با ترکیبی از دو نوع قطبیدگی انجام می‌پذیرد .
به طور کلی می‌توان چهارترکیب از قطبیدگی رادرا در نظر گرفت : • HH • VV • HV • VH حرف H نشان دهنده قطبیدگی افقی وحرفV نمایانگر قطبیدگی عمودی می‌باشد. درچهارترکیب بالا حرف سمت راست نحوه دریافت سیگنال را نشان می‌دهد . § هندسه رادار (radar geometry): درسیستم تصویربرداری رادار هوایی با جابجانمودن سکو در یک مسیر مستقیم که مسیرپرواز(flight direction)(A) نامیده می‌شودعمل تصویربرداری انجام میگردد. پای قائم در صفحه تصویر را ندیر(nadir)(B) می‌نامیم .آنتن رادار امواج را برای روشن کردن نوارتصویر(swath) (C) ارسال می‌کند. با قرار گرفتن نوارهای تصویر در کنار هم ناحیه تصویر(track) (ناحیه خاکستری رنگ ) تشکیل می‌گردد که این ناحیه نسبت به خط ندیر فاصله دارد. محور طولی ناحیه تصویرکه با مسیر پروازموازی می‌باشدرا سمت(azimuth)(E) ومحورعرضی راکه برمسیرپروازعمود است را برد(range)(D) می‌نامیم .
واژه‌شناسی : محدوده نزدیک (Near range): بخشی از نوارتصویر که به خط ندیر نزدیک است . محدوده دور(far range) : بخشی از نوار تصویر که در فاصله دور نسبت به خط ندیر قرار دارد . برد مایل (slant range): خط شعاعی که از رادار به هریک از اهداف می‌توان نظیر کرد . برد زمینی (ground range ) : تصویر برد مایل در سطح زمین . زاویه تابش(incidence angle) : زاویه بین پرتورادار و سطح زمین . زاویه دید(look angle) : زاویه بین خط عمود وپرتو رادار. تصویر شماره 6 § اثرات سطح بر تصویر رادار : میزان روشنایی ( درخشندگی ) تصویر به میزان پراکندگی(scattering) سیگنالهای مایکرویودر برخورد باسطح بستگی دارد. پراکنش سیگنال به پارامترهایی از قبیل مشخصات رادار (فرکانس قطبیدگی هندسه دید و...) وهمچنین خصوصیات سطح (پستی وبلندی نوع پوشش و...) وابسته‌است. به طور کلی می‌توانیم عوامل بالا را در سه عامل اصلی زیر خلاصه کنیم : 1) صیقلی بودن سطح 2) هنسه دید و رابطه آن باسطح 3) درصد رطوبت وخصوصیات الکتریکی سطح صیقلی بودن سطح مهمترین عامل تعیین کننده روشنایی تصویرمی باشد. سطوح صاف موجب بازتابش آیینه ای(A) در فعل وانفعال سیگنال رادار با سطح می‌گردند. درنتیجه این نوع بازتابش مقدار اندکی ازسیگنالهای بازتابیده شده به سمت رادار باز میگردند. بنابراین سطوح صاف با درجه تیره گی بیشتر در تصویر ظاهر خواهند گشت. سطوح ناصاف سیگنالهای رادار راتقریبا به صورت یکنواخت بازتاب می‌دهند. و درنتیجه بخش عمده‌ای از این سیگنالها به سمت راداربازمیگردند. بنابراین سطوح ناصاف با درجه روشنایی بیشتر در تصویر مشاهده می‌شوند. به این نوع انعکاس بازتابش پخشیده(B)گفته می‌شود. احتمال وقوع انعکاس زاویه‌ای (C) در نواحی که از سطوح عمود برهم تشکیل شده وجود دارد. به بیان ساده تر سیگنالهای بازتابیده شده از سطح اول پس از برخورد به سطح دوم به سمت رادار بازتاب داده میشود .این نوع انعکاس به طور معمول در مناطق شهری (ساختمانها خیابانها پلها و... ) اتفاق می‌افتد. صخره‌ها کوه‌ها ونیزار رودخانه‌ها نیز سیگنال رادار را اینگونه بازتاب می‌دهند.
زاویه تابش(incidence angle) نیز در نحوه شکل گیری تصویر همچنین صیقلی بودن سطوح نقش ایفا می‌کند. با در نظر گرفتن سطح وطول موج ثابت با افزایش زاویه تابش سیگنالهای کمتری به سوی رادار بازمیگردند ودر نتیجه درجه تیره گی افزایش می‌یابد .به بیان دیگر با افزایش زاویه تابش سطوح صیقلی تر از مقدار واقعی خود در تصویر ظاهرمی شوند. به طور کلی تغییر در هندسه دید در بهبود نقشه‌های جغرافیایی وهمچنین برطرف کردن اختلالهایی از قبیل سایه دارشدن و کاهش عمق تصویرموثر می‌باشد. وجود رطوبت در خصوصیات الکتریکی وحجم اجسام موثر می‌باشد. تغییر در خواص الکتریکی در جذب ارسال وهمچنین نحوه شکل گیری تصویر موثر می‌باشد. بنابراین درصد رطوبت اجسام در فعل وانفعال سیگنال رادارومتعاقبا تصویر موثر می‌باشد. معمولا با افزایش رطوبت جسم سیگنالهای بیشتری توسط جسم بازتابیده می‌شود. برای مثال علفزارهای وسیع در هنگامی که مرطوب هستند در تصویر رادار روشنتر ظاهر می‌شوند.
دقت تفکیک(spatial resolution) : به میزان توانایی رادار جهت تفکیک اشیاء مختلف از همدیگر دقت تفکیک گفته می‌شود. بر خلاف سیستمهای نوری افزایش دقت تفکیک در رادار بر اساس خصوصیات امواج مایکرویو وهمچنین تاثیرات هندسی انجام می‌پذیرد. دررادارهایی که از یک آنتن جهت ارسال امواج استفاده می‌کنند یک پالس موج ارسال گشته و با دریافت پژواک آن توسط گیرنده تصویر تشکیل می‌شود . دقت تفکیک را می‌توان در دو راستا بررسی کرد. در جهت سمت ناحیه تصویر که دقت سمت (azimuth resolution) نامیده می‌شود ودر جهت برد که آن را دقت برد (range resolution) می‌نامیم . دقت برد به طول پالس رادار (P) بستگی دارد. در صورتی که عمل تفکیک با طول بیشتر از نصف پالس صورت گیرد اهداف از یکدیگر قابل تشخیص اند.
رادار دهانه ترکیبی (synthetic aperture radar): همانطور که در قسمت قبل گفته شد جهت بالابردن دقت سمت می‌توانیم طول آنتن رادار را افزایش دهیم. اگرچه در این افزایش طول ما با محدودیتهایی مواجه هستیم. در رادرهای هوایی طول آنتن رادار بین 1 تا 2 متر در نظر گرفته می‌شود. در ماهواره‌ها ما می‌توانیم این محدوده را بین 10 تا 15 متر در نظر بگیریم. با تغییراتی در چگونگی حرکت سکوی رادار وثبت و پردازش سیگنالهای بازتابیده شده می‌توان بر محدودیت اندازه غلبه کرد. بدین طریق که ما با تغییر در نحوه رفتار رادار به صورت مجازی طول آنتن رادار را افزایش داده‌ایم . تصویر چگونگی رسیدن به این خواسته را تشریح می‌کنیم .
 1) ابتداشیءهدف (A)سیگنالهای مایکرویو را به صورت پالس دریافت کرده. پژواکهای هر پالس توسط رادار ثبت می‌شوند. سکوی رادار در مسیر مستقیم به طور پیوسته در حال حرکت است. در طول زمانی که شیء هدف در معرض پالسهای رادار قرار داردعمل ثبت سیگنالهای بازتابیده شده از شیءتوسط رادار انجام می‌پذیرد .
2) زمان چندانی طول نمی‌کشد تا طول آنتن ترکیبی (B) مشخص گردد . با افزایش پهنای زاویه‌ای وهمچنین کاهش سرعت سکو می‌توانیم دقت سمت را در محدوده دور افزایش دهیم .در نتیجه شاهد ثابت ماندن دقت تفکیک درراستای سمت می‌باشیم .به تکنولوژی فوق که جهت افزایش دقت برد صورت می‌پذیرد رادار دهانه ترکیبی یا SAR گفته می‌شود .این روش در اکثررادارهای هوایی وفضایی استفاده می‌شود .
 خصوصیات تصویر رادار : در تصاویر رادار با نوعی اختلال مواجه هستیم که به نویز اسپیکل(speckle) معروف است. این اختلال که باعث ظاهرشدن دانه‌های ریزودرشت (بافت فلفل نمکی) در تصویر می‌شود زاییده ساختار بهم ریخته سطح و همچنین تداخل سیگنالهای بازتابیده می‌باشد. به عنوان نمونه یک سطح هموار مانند علفزار را در نظر می‌گیریم. بدون در نظر گرفتن اثر این اختلال پیکسلهای تصویر با درجه روشنایی یکسان مشاهده می‌شوند. حال آنکه در تصویر حقیقی به علت تداخل سیگنالهای پراکنده شده پیکسلها دارای درجات روشنایی متفاوت می‌باشند .
در واقع نویز اسپیکل کیفیت تصاویر راکاهش داده ودر نتیجه درتحلیل تصاویربا مشکل مواجه می‌شویم .حال برای کاهش این اثر میتوان دو روش را بکار برد :
 1) دید چندگانه (multi-looking processing): در این روش هر پرتو رادار به چندین زیرپرتو (اشعه) تقسیم شده و هر اشعه وظیفه پوشش دادن یک ناحیه را بر عهده دارد. با ثبت تصاویر تشکیل شده توسط هر اشعه ومعدل گیری از آنها جهت تشکیل تصویر نهایی می‌توان نویز اسپیکل را کاهش داد .
 2) فیلترینگ (spatial filtering) : پس از پایان یافتن مرحله اول وتشکیل تصویر اولیه فیلترکردن تصویر آغاز می‌شود. در این روش با حرکت دادن یک پنجره متشکل از تعدادی پیکسل (معمولا 5×5 یا 3×3 ) در طی سطر وستون تصویر از پیکسلهایی که هر پنجره پوشش می‌دهد معدل گیری (درجه روشنایی پیکسلهای موجود در هر پنجره اندازهگیری شده و پیکسلی با درجه روشنایی واحد جایگزین پنجره مربوطه می‌گردد) انجام می‌شود.
بایستی توجه داشته باشیم که کاهش نویز اسپیکل باعث کاهش وضوح تصویر می‌گردد. در نتیجه برای ایجاد تصاویر با جزئیات دقیق نمی‌توان از این روش استفاده کرد. زمانی که سطح هدف را وسیع در نظر بگیریم کاهش نویز اسپیکل می‌تواند مثمر ثمرباشد .
گاه نیاز به استفاده از اندازه گیریهای دقیق جهت مقایسه مشاهدات وبدست آوردن نتایج لازم می‌باشد. در نتیجه بایستی دقت دقت ابزار اندازه گیری افزایش پیدا کند. این فعل توسط فرآیندی به نام کالیبراسیون (calibrasion) انجام‌پذیر است. ازآنجاییکه عمل اندازه گیری از اعمال اصلی رادار می‌باشد در نتیجه کالیبراسیون بسیار مهم می‌باشد. کالیبراسیون تلاش می‌کند تا اختلاف میان مقدار انرژی سیگنال بازتابیده با مقدار اندازه گیری شده توسط رادار کاهش یابد. در نتیجه کالیبراسیون دقیق ما شاهد تصاویری با دقت اندازه گیری یکسان توسط رادار خواهیم بود. در کالیبراسیون نسبی سعی بر افزایش دقت سیستم رادار است. در حالیکه در کالیبراسیون مطلق با نصب دستگاههایی بر روی زمین انرژی سیگنالهای بازتابیده شده از سطح اندازه گیری شده و پس از تقویت به سوی رادار فرستاده می‌شوند. رادار می‌تواند با استفاده از این مقادیر به مقدار حقیقی انرژی دست پیدا کند .ودر نتیجه استنباط دقیقتری ازسطح حاصل داشته باشد .
 کاربردهای پیشرفته : علا وه بر کسب واستفاده درست از اطلاعات کابردهای خاص رادار به شرح زیر می‌باشد : نخست تکنولوژی تصویر   سه بعدی (stereo image) می‌باشد. در این روش با پوشش دادن ناحیه تصویر با زوایای تابش متفاوت وهمچنین بهره گیری ازجهتهای دید متفاوت یا مخالف و انطباق تصاویر ایجادشده می‌توان یک تصویر سه بعدی از ناحیه تصویر ایجاد کرد .در نتیجه اختلالهایی از قبیل سایه دارشدن بعضی نواحی برطرف گردیده وزمینه برای تحلیل دقیقتر تصاویر فراهم می‌گردد. این تکنولوژی در تحلیل تصاویر مناطق جنگلی و جغرافیایی وهمچنین نقشه برداری از عراضی کاربرد دارد . از دیگر پیشرفتهای حاصل شده می‌توان به قطبش سنجی (polqrimetry) اشاره کرد. در این روش امکان دریافت و   ارسال سیگنالهای مایکرویو به صورت ترکیبی از قطبیدگی افقی و عمودی وجود دارد. در نتیجه ما می‌توانیم چهار ترکیب HH VV VH HV را برای دریافت یا ارسال امواج در نظر بگیریم. بدین طریق با ایجاد تصویری با ویژگیهای مختلف نتایج لازم جهت دستیابی به تصویر دقیقتر حاصل می‌گردد . 
نتیجه : ازآنجاییکه اهداف نظامی از اولویتهای کشورها می‌باشد ازاینرو لزوم پیشرفت در این زمینه برای کشورما جدی می‌باشد. با گسترش سیستمهای سنجش از راه دور می‌توان گامی دیگر برای رسیدن به این اهداف برداشت. با توسعه سیستمهای تصویری می‌توان تصاویر دقیقی از اهداف مورد نظر تهیه کرد .
 

پارسیان الکتریک لاله زار : بزرگترین وبسایت تخصصی صنعت برق و الکتریک کشور ،ثبت شرکت های تولیدی و معرفی تمامی محصولات الکتریکی ، ثبت رایگان همه مشاغل صنعت برق ، تدوین و گرد آوری مقالات تخصصی برق ، الکتریک ، الکتروتکنیک ، الکترونیک.

پخش پارسیان الکتریک : تهیه و توزیع کالای الکتریکی - ارسال سریع کالا به تمام نقاط کشور

 شماره تماس کرامتی 09103359638***09391943432

آدرس دفتر مرکزی : خ لاله زار شمالی، بالاتر از منوچهری-کوچه مصباح کریمی-پلاک 13-واحد 3

 

-

شماره تماس  02166344750 *کرامتی 09103359638***09391943432